Proteome profiling of heat, oxidative, and salt stress responses in Thermococcus kodakarensis KOD1
نویسندگان
چکیده
The thermophilic species, Thermococcus kodakarensis KOD1, a model microorganism for studying hyperthermophiles, has adapted to optimal growth under conditions of high temperature and salinity. However, the environmental conditions for the strain are not always stable, and this strain might face different stresses. In the present study, we compared the proteome response of T. kodakarensis to heat, oxidative, and salt stresses using two-dimensional electrophoresis, and protein spots were identified through MALDI-TOF/MS. Fifty-nine, forty-two, and twenty-nine spots were induced under heat, oxidative, and salt stresses, respectively. Among the up-regulated proteins, four proteins (a hypothetical protein, pyridoxal biosynthesis lyase, peroxiredoxin, and protein disulphide oxidoreductase) were associated with all three stresses. Gene ontology analysis showed that these proteins were primarily involved metabolic and cellular processes. The KEGG pathway analysis suggested that the main metabolic pathways involving these enzymes were related to carbohydrate metabolism, secondary metabolite synthesis, and amino acid biosynthesis. These data might enhance our understanding of the functions and molecular mechanisms of thermophilic Archaea for survival and adaptation in extreme environments.
منابع مشابه
Recombinant Cyclodextrinase from Thermococcus kodakarensis KOD1: Expression, Purification, and Enzymatic Characterization
A gene encoding a cyclodextrinase from Thermococcus kodakarensis KOD1 (CDase-Tk) was identified and characterized. The gene encodes a protein of 656 amino acid residues with a molecular mass of 76.4 kDa harboring four conserved regions found in all members of the α-amylase family. A recombinant form of the enzyme was purified by ion-exchange chromatography, and its catalytic properties were exa...
متن کاملSequence, Structure, and Binding Analysis of Cyclodextrinase (TK1770) from T. kodakarensis (KOD1) Using an In Silico Approach
Thermostable cyclodextrinase (Tk1770 CDase) from hyperthermophilic archaeon Thermococcus kodakarensis (KOD1) hydrolyzes cyclodextrins into linear dextrins. The sequence of Tk1770 CDase retrieved from UniProt was aligned with sequences of sixteen CD hydrolyzing enzymes and a phylogenetic tree was constructed using Bayesian inference. The homology model of Tk1770 CDase was constructed and optimiz...
متن کاملThermostable alcohol dehydrogenase from Thermococcus kodakarensis KOD1 for enantioselective bioconversion of aromatic secondary alcohols.
A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable wi...
متن کاملThermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability
We observed significant changes in the elemental and intact polar lipid (IPL) composition of the archaeon Thermococcus kodakarensis (KOD1) in response to growth stage and phosphorus supply. Reducing the amount of organic supplements and phosphate in growth media resulted in significant decreases in cell size and cellular quotas of carbon (C), nitrogen (N), and phosphorus (P), which coincided wi...
متن کاملMolecular bases of thermophily in hyperthermophiles
I reflect on some of our studies on the hyperthermophilic archaeon, Thermococcus kodakarensis KOD1 and its enzymes. The strain can grow at temperatures up to 100 °C, and also represents one of the simplest forms of life. As expected, all enzymes, DNA, RNA, cytoplasmic membrane, and cytoplasmic solute displayed remarkable thermostability, and we have determined some of the basic principles that ...
متن کامل